3.685 \(\int \frac{(a+b x)^{5/2}}{x (c+d x)^{3/2}} \, dx\)

Optimal. Leaf size=163 \[ -\frac{2 a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{c^{3/2}}-\frac{b^{3/2} (3 b c-5 a d) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{d^{5/2}}+\frac{b \sqrt{a+b x} \sqrt{c+d x} (3 b c-2 a d)}{c d^2}-\frac{2 (a+b x)^{3/2} (b c-a d)}{c d \sqrt{c+d x}} \]

[Out]

(-2*(b*c - a*d)*(a + b*x)^(3/2))/(c*d*Sqrt[c + d*x]) + (b*(3*b*c - 2*a*d)*Sqrt[a + b*x]*Sqrt[c + d*x])/(c*d^2)
 - (2*a^(5/2)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c + d*x])])/c^(3/2) - (b^(3/2)*(3*b*c - 5*a*d)*Arc
Tanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/d^(5/2)

________________________________________________________________________________________

Rubi [A]  time = 0.138804, antiderivative size = 163, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.364, Rules used = {98, 154, 157, 63, 217, 206, 93, 208} \[ -\frac{2 a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{c^{3/2}}-\frac{b^{3/2} (3 b c-5 a d) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{d^{5/2}}+\frac{b \sqrt{a+b x} \sqrt{c+d x} (3 b c-2 a d)}{c d^2}-\frac{2 (a+b x)^{3/2} (b c-a d)}{c d \sqrt{c+d x}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x)^(5/2)/(x*(c + d*x)^(3/2)),x]

[Out]

(-2*(b*c - a*d)*(a + b*x)^(3/2))/(c*d*Sqrt[c + d*x]) + (b*(3*b*c - 2*a*d)*Sqrt[a + b*x]*Sqrt[c + d*x])/(c*d^2)
 - (2*a^(5/2)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c + d*x])])/c^(3/2) - (b^(3/2)*(3*b*c - 5*a*d)*Arc
Tanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/d^(5/2)

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 154

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 157

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[((c + d*x)^n*(e + f*x)^p)/(a + b*x
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(a+b x)^{5/2}}{x (c+d x)^{3/2}} \, dx &=-\frac{2 (b c-a d) (a+b x)^{3/2}}{c d \sqrt{c+d x}}+\frac{2 \int \frac{\sqrt{a+b x} \left (\frac{a^2 d}{2}+\frac{1}{2} b (3 b c-2 a d) x\right )}{x \sqrt{c+d x}} \, dx}{c d}\\ &=-\frac{2 (b c-a d) (a+b x)^{3/2}}{c d \sqrt{c+d x}}+\frac{b (3 b c-2 a d) \sqrt{a+b x} \sqrt{c+d x}}{c d^2}+\frac{2 \int \frac{\frac{a^3 d^2}{2}-\frac{1}{4} b^2 c (3 b c-5 a d) x}{x \sqrt{a+b x} \sqrt{c+d x}} \, dx}{c d^2}\\ &=-\frac{2 (b c-a d) (a+b x)^{3/2}}{c d \sqrt{c+d x}}+\frac{b (3 b c-2 a d) \sqrt{a+b x} \sqrt{c+d x}}{c d^2}+\frac{a^3 \int \frac{1}{x \sqrt{a+b x} \sqrt{c+d x}} \, dx}{c}-\frac{\left (b^2 (3 b c-5 a d)\right ) \int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx}{2 d^2}\\ &=-\frac{2 (b c-a d) (a+b x)^{3/2}}{c d \sqrt{c+d x}}+\frac{b (3 b c-2 a d) \sqrt{a+b x} \sqrt{c+d x}}{c d^2}+\frac{\left (2 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{-a+c x^2} \, dx,x,\frac{\sqrt{a+b x}}{\sqrt{c+d x}}\right )}{c}-\frac{(b (3 b c-5 a d)) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b x}\right )}{d^2}\\ &=-\frac{2 (b c-a d) (a+b x)^{3/2}}{c d \sqrt{c+d x}}+\frac{b (3 b c-2 a d) \sqrt{a+b x} \sqrt{c+d x}}{c d^2}-\frac{2 a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{c^{3/2}}-\frac{(b (3 b c-5 a d)) \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b x}}{\sqrt{c+d x}}\right )}{d^2}\\ &=-\frac{2 (b c-a d) (a+b x)^{3/2}}{c d \sqrt{c+d x}}+\frac{b (3 b c-2 a d) \sqrt{a+b x} \sqrt{c+d x}}{c d^2}-\frac{2 a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{c^{3/2}}-\frac{b^{3/2} (3 b c-5 a d) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{d^{5/2}}\\ \end{align*}

Mathematica [C]  time = 1.59291, size = 226, normalized size = 1.39 \[ \frac{2 \left (5 a \left (-\frac{a^{3/2} \sqrt{c+d x} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{c^{3/2}}+\frac{b \sqrt{b c-a d} \sqrt{\frac{b (c+d x)}{b c-a d}} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b c-a d}}\right )}{d^{3/2}}+\frac{\sqrt{a+b x} (a d-b c)}{c d}\right )+\frac{(a+b x)^{5/2} \left (\frac{b (c+d x)}{b c-a d}\right )^{3/2} \, _2F_1\left (\frac{3}{2},\frac{5}{2};\frac{7}{2};\frac{d (a+b x)}{a d-b c}\right )}{c+d x}\right )}{5 \sqrt{c+d x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)^(5/2)/(x*(c + d*x)^(3/2)),x]

[Out]

(2*(5*a*(((-(b*c) + a*d)*Sqrt[a + b*x])/(c*d) + (b*Sqrt[b*c - a*d]*Sqrt[(b*(c + d*x))/(b*c - a*d)]*ArcSinh[(Sq
rt[d]*Sqrt[a + b*x])/Sqrt[b*c - a*d]])/d^(3/2) - (a^(3/2)*Sqrt[c + d*x]*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[
a]*Sqrt[c + d*x])])/c^(3/2)) + ((a + b*x)^(5/2)*((b*(c + d*x))/(b*c - a*d))^(3/2)*Hypergeometric2F1[3/2, 5/2,
7/2, (d*(a + b*x))/(-(b*c) + a*d)])/(c + d*x)))/(5*Sqrt[c + d*x])

________________________________________________________________________________________

Maple [B]  time = 0.021, size = 492, normalized size = 3. \begin{align*} -{\frac{1}{2\,{d}^{2}c}\sqrt{bx+a} \left ( 2\,\ln \left ({\frac{adx+bcx+2\,\sqrt{ac}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }+2\,ac}{x}} \right ) x{a}^{3}{d}^{3}\sqrt{bd}-5\,\ln \left ( 1/2\,{\frac{2\,bdx+2\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}+ad+bc}{\sqrt{bd}}} \right ) xa{b}^{2}c{d}^{2}\sqrt{ac}+3\,\ln \left ( 1/2\,{\frac{2\,bdx+2\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}+ad+bc}{\sqrt{bd}}} \right ) x{b}^{3}{c}^{2}d\sqrt{ac}+2\,\sqrt{bd}\ln \left ({\frac{adx+bcx+2\,\sqrt{ac}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }+2\,ac}{x}} \right ){a}^{3}c{d}^{2}-5\,\ln \left ( 1/2\,{\frac{2\,bdx+2\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}+ad+bc}{\sqrt{bd}}} \right ) \sqrt{ac}a{b}^{2}{c}^{2}d+3\,\ln \left ( 1/2\,{\frac{2\,bdx+2\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}+ad+bc}{\sqrt{bd}}} \right ) \sqrt{ac}{b}^{3}{c}^{3}-2\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}\sqrt{ac}x{b}^{2}cd-4\,\sqrt{bd}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{ac}{a}^{2}{d}^{2}+8\,\sqrt{bd}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{ac}abcd-6\,\sqrt{bd}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{ac}{b}^{2}{c}^{2} \right ){\frac{1}{\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }}}{\frac{1}{\sqrt{bd}}}{\frac{1}{\sqrt{ac}}}{\frac{1}{\sqrt{dx+c}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(5/2)/x/(d*x+c)^(3/2),x)

[Out]

-1/2*(b*x+a)^(1/2)*(2*ln((a*d*x+b*c*x+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*x*a^3*d^3*(b*d)^(1/2)-5*
ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*x*a*b^2*c*d^2*(a*c)^(1/2)+3*ln(1/2
*(2*b*d*x+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*x*b^3*c^2*d*(a*c)^(1/2)+2*(b*d)^(1/2)*ln
((a*d*x+b*c*x+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*a^3*c*d^2-5*ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^
(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*(a*c)^(1/2)*a*b^2*c^2*d+3*ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^(1/2)*(b
*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*(a*c)^(1/2)*b^3*c^3-2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)*(a*c)^(1/2)*x*b^2*c*
d-4*(b*d)^(1/2)*((b*x+a)*(d*x+c))^(1/2)*(a*c)^(1/2)*a^2*d^2+8*(b*d)^(1/2)*((b*x+a)*(d*x+c))^(1/2)*(a*c)^(1/2)*
a*b*c*d-6*(b*d)^(1/2)*((b*x+a)*(d*x+c))^(1/2)*(a*c)^(1/2)*b^2*c^2)/c/((b*x+a)*(d*x+c))^(1/2)/(b*d)^(1/2)/(a*c)
^(1/2)/(d*x+c)^(1/2)/d^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(5/2)/x/(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 16.2662, size = 2601, normalized size = 15.96 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(5/2)/x/(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

[-1/4*((3*b^2*c^3 - 5*a*b*c^2*d + (3*b^2*c^2*d - 5*a*b*c*d^2)*x)*sqrt(b/d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b
*c*d + a^2*d^2 + 4*(2*b*d^2*x + b*c*d + a*d^2)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(b/d) + 8*(b^2*c*d + a*b*d^2)*x
) - 2*(a^2*d^3*x + a^2*c*d^2)*sqrt(a/c)*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^2 - 4*(2*a*c^2 + (b
*c^2 + a*c*d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(a/c) + 8*(a*b*c^2 + a^2*c*d)*x)/x^2) - 4*(b^2*c*d*x + 3*b^2*
c^2 - 4*a*b*c*d + 2*a^2*d^2)*sqrt(b*x + a)*sqrt(d*x + c))/(c*d^3*x + c^2*d^2), 1/2*((3*b^2*c^3 - 5*a*b*c^2*d +
 (3*b^2*c^2*d - 5*a*b*c*d^2)*x)*sqrt(-b/d)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-
b/d)/(b^2*d*x^2 + a*b*c + (b^2*c + a*b*d)*x)) + (a^2*d^3*x + a^2*c*d^2)*sqrt(a/c)*log((8*a^2*c^2 + (b^2*c^2 +
6*a*b*c*d + a^2*d^2)*x^2 - 4*(2*a*c^2 + (b*c^2 + a*c*d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(a/c) + 8*(a*b*c^2
+ a^2*c*d)*x)/x^2) + 2*(b^2*c*d*x + 3*b^2*c^2 - 4*a*b*c*d + 2*a^2*d^2)*sqrt(b*x + a)*sqrt(d*x + c))/(c*d^3*x +
 c^2*d^2), 1/4*(4*(a^2*d^3*x + a^2*c*d^2)*sqrt(-a/c)*arctan(1/2*(2*a*c + (b*c + a*d)*x)*sqrt(b*x + a)*sqrt(d*x
 + c)*sqrt(-a/c)/(a*b*d*x^2 + a^2*c + (a*b*c + a^2*d)*x)) - (3*b^2*c^3 - 5*a*b*c^2*d + (3*b^2*c^2*d - 5*a*b*c*
d^2)*x)*sqrt(b/d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b*d^2*x + b*c*d + a*d^2)*sqrt(b*x +
 a)*sqrt(d*x + c)*sqrt(b/d) + 8*(b^2*c*d + a*b*d^2)*x) + 4*(b^2*c*d*x + 3*b^2*c^2 - 4*a*b*c*d + 2*a^2*d^2)*sqr
t(b*x + a)*sqrt(d*x + c))/(c*d^3*x + c^2*d^2), 1/2*(2*(a^2*d^3*x + a^2*c*d^2)*sqrt(-a/c)*arctan(1/2*(2*a*c + (
b*c + a*d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-a/c)/(a*b*d*x^2 + a^2*c + (a*b*c + a^2*d)*x)) + (3*b^2*c^3 - 5
*a*b*c^2*d + (3*b^2*c^2*d - 5*a*b*c*d^2)*x)*sqrt(-b/d)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(b*x + a)*sqrt(d*x
 + c)*sqrt(-b/d)/(b^2*d*x^2 + a*b*c + (b^2*c + a*b*d)*x)) + 2*(b^2*c*d*x + 3*b^2*c^2 - 4*a*b*c*d + 2*a^2*d^2)*
sqrt(b*x + a)*sqrt(d*x + c))/(c*d^3*x + c^2*d^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x\right )^{\frac{5}{2}}}{x \left (c + d x\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(5/2)/x/(d*x+c)**(3/2),x)

[Out]

Integral((a + b*x)**(5/2)/(x*(c + d*x)**(3/2)), x)

________________________________________________________________________________________

Giac [B]  time = 2.45729, size = 392, normalized size = 2.4 \begin{align*} \frac{2 \, \sqrt{b d} a^{3} b \arctan \left (\frac{b^{2} c + a b d -{\left (\sqrt{b d} \sqrt{b x + a} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}\right )}^{2}}{2 \, \sqrt{-a b c d} b}\right )}{\sqrt{-a b c d} c{\left | b \right |}} - \frac{{\left (\frac{{\left (b x + a\right )} b^{5} c d^{2}}{b^{6} c d^{4} - a b^{5} d^{5}} + \frac{3 \, b^{6} c^{2} d - 5 \, a b^{5} c d^{2} + 2 \, a^{2} b^{4} d^{3}}{b^{6} c d^{4} - a b^{5} d^{5}}\right )} \sqrt{b x + a}}{32 \, \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}} - \frac{{\left (3 \, \sqrt{b d} b c^{2} - 5 \, \sqrt{b d} a c d\right )} \log \left ({\left (\sqrt{b d} \sqrt{b x + a} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}\right )}^{2}\right )}{64 \,{\left (b^{2} c d^{4} - a b d^{5}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(5/2)/x/(d*x+c)^(3/2),x, algorithm="giac")

[Out]

2*sqrt(b*d)*a^3*b*arctan(1/2*(b^2*c + a*b*d - (sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^
2)/(sqrt(-a*b*c*d)*b))/(sqrt(-a*b*c*d)*c*abs(b)) - 1/32*((b*x + a)*b^5*c*d^2/(b^6*c*d^4 - a*b^5*d^5) + (3*b^6*
c^2*d - 5*a*b^5*c*d^2 + 2*a^2*b^4*d^3)/(b^6*c*d^4 - a*b^5*d^5))*sqrt(b*x + a)/sqrt(b^2*c + (b*x + a)*b*d - a*b
*d) - 1/64*(3*sqrt(b*d)*b*c^2 - 5*sqrt(b*d)*a*c*d)*log((sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d -
 a*b*d))^2)/(b^2*c*d^4 - a*b*d^5)